KISSsoft 03/2016 – Tutorial 10

Lifetime analysis of cylindrical gears
Contents

1 Task ... 3
 1.1 Task .. 3
2 Calling the program ... 4
 2.1 Starting the software .. 4
3 Entering the data .. 4
 3.1 Inputting the load spectrum ... 4
 3.1.1 Database: direct entry ... 4
 3.1.2 Database: data input from a file ... 6
 3.1.3 Own input .. 7
 3.2 Inputting toothing data .. 8
 3.3 Defining further parameters ... 9
 3.3.1 Center distance .. 9
 3.3.2 Profile shift coefficient ... 10
 3.3.3 Lubrication .. 12
4 Strength analysis with load spectra ... 13
 4.1 Resulting service life with required safety factors ... 13
 4.2 Resulting safety factors for a required service life ... 18
 4.3 Calculating maximum permissible torque .. 18
5 Additional calculations ... 19
 5.1 Safety against scuffing .. 19
 5.2 Necessary hardening depth ... 21
1 Task

1.1 Task

To analyze the strength of a helical gear pair as specified in ISO 6336, Method B. A load spectrum is used in this example. The safety factors, service life and permissible power rating are to be calculated.

The following data is specified for this helical gear pair:

<table>
<thead>
<tr>
<th></th>
<th>Gear 1</th>
<th>Gear 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module [mm]</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Helix angle [degrees]</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pressure angle [degrees]</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Number of teeth [-]</td>
<td>25</td>
<td>76</td>
</tr>
<tr>
<td>Width [mm]</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>Material</td>
<td>18CrNiMo7-6 case-hardened</td>
<td>18CrNiMo7-6 case-hardened</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>3360</td>
<td>follows</td>
</tr>
<tr>
<td>Nominal speed [Rpm]</td>
<td>440</td>
<td>follows</td>
</tr>
<tr>
<td>Application factor [-]</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Required service life [h]</td>
<td>20'000</td>
<td>20'000</td>
</tr>
</tbody>
</table>

The following load spectrum is to be used:

<table>
<thead>
<tr>
<th>Frequency [%]</th>
<th>Speed factor [%]</th>
<th>Torque factor [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
2 Calling the program

2.1 Starting the software

You can call KISSsoft as soon as the software has been installed and activated. Usually you start the program by clicking “Start→Program Files→KISSsoft 03-2016→KISSsoft 03-2016”. This opens the following KISSsoft user interface:

![Starting KISSsoft, initial window](image)

3 Entering the data

3.1 Inputting the load spectrum

KISSsoft provides a range of different options for you to input load spectra. If the load spectrum is stored in the database it is also available to other calculations. In contrast, if you use the “Own input” option to enter the load spectrum, it is only available to the current calculation.

3.1.1 Database: direct entry

After you have opened the database tool as shown in Figure 2 with authorization to write data to it (you may have to run KISSsoft as the Administrator), you now have a range of options for defining load spectra in the database. Select "Load spectra" from the list and click on "Edit" to call the appropriate table.
Click to create a new data record. If a data record is marked, its data is copied and "_NEW" is appended to its label. If no data record is marked, a new one will be created. Now enter a description. You now see information about the "frequency, load or torque factors and speed factors" for the corresponding load level elements. You can also specify whether the load spectrum refers to the torque or the transmitted power. Once you have finished entering data for this load spectrum, click "OK" and then click "Save" to save this data record. Then click "Close" to close the database tool and return to the KISSsoft system's initial screen. The load spectrum is now available for analysis.
3.1.2 Database: data input from a file

You can also transfer a load spectrum to the database in a file. To do this, enter the required load spectrum (without the face load alternating bending factors, and load distribution factor, for each load element) in a text editor as shown below (see Example_DutyCycle.dat):

Frequency, torque/power, speed
For example:
0.1 0.2 0.2
0.2 0.3 0.5
0.4 0.9 0.8
0.3 1.0 1.0

If these factors are required/present for each load element for the calculation, you must define the load spectrum as shown in Example_DutyCycleWithFactors.dat.

This file is saved as a file with the file extension *.dat (in this example "Example-Tut-010.dat", for preference in the ...\KISSsoft 03-2016\ext\DAT folder (for more information, see Figure 5) or in any other folder (for more information see Figure 6).

In the KISSsoft installation folder you will find a folder called C:\Programs\KISSsoft 03-2016\ext\DAT. If you store files with the file extension *.dat in this folder, the KISSsoft system will be able to find them automatically. In this case, you only need to enter the following:
If you save the file with the load spectrum to a different folder, you must also store the entire path + file name in the "File name" field. If the path name is too long, follow the steps described above:

3.1.3 Own input

Alternatively you can define load spectra in the Rating tab. Here you can also use load spectra with or without the face load and alternating bending factors, and load distribution factor, for each load element.

If, as in this example, you want to define a load spectrum without these factors, you must make the following settings in the Factors and Rating tabs:
(1) Type of load spectrum (database spectrum (predefined and generated by the user), Own Input)
(2) Type of input: for example, power/torque related, factors or absolute values or imported from a file
(3) Definition of the range of endurance limit of the Woehler line
(4) "Insert a load spectrum element", "Delete a load spectrum element", "Delete all entries"

3.2 Inputting toothing data

To call the cylindrical gear calculation, go to the modules tree window in the KISSsoft main screen. There, click the "Modules" tab and then click "Cylindrical gear pair". Then input the toothing data specified below:

In the Basic data tab:

![Basic data tab](image)

Figure 8. Inputting toothing and load data
In the Rating tab:

![Image of the Rating tab](image)

Figure 9. Inputting toothing and load data

1. Reference gear
2. Load: here you must input two of the three values (speed, torque, power)
3. Calculation method

3.3 Defining further parameters

3.3.1 Center distance

Click the Sizing button ![Sizing button](image) to the right of the Center distance input field to define the center distance. At this point, no profile shift coefficient has been defined and therefore the total profile shift coefficient is zero. To calculate the center distance, click "Calculate" and then transfer this value to the main screen by clicking "Accept".

![Image of Sizing center distance](image)

Figure 10. Calculation of the center distance with a predefined sum of profile shift coefficients (here zero)
3.3.2 Profile shift coefficient

You should select profile shift coefficients so that the minimum specific, balanced sliding is achieved. To do this, click the Sizing button next to the profile shift.

Figure 11. “Sizing button” for the profile shift coefficient

You then see the resulting profile shift coefficients for different criteria. In this example, you should select profile shift coefficients for the “For optimal specific sliding” criterion.

Figure 12. Sizing profile shift coefficients

Figure 13. Calculated profile shift coefficients

The center distance is a theoretical value. It is set to 304.2 mm (overwrite the value directly in the screen).

To make the required changes to the profile shift coefficients, click ☑️ (Calculate). This is a minor change that does not affect specific sliding. When you perform the analysis, the system also defines the safety factors for the specified nominal load. The results then appear in the lower part of the window.
Figure 14. Gear pair with a sensible center distance, profile shift coefficients, and the first results under nominal load

1. Manually defined center distance
2. Call the analysis
3. Slight change to profile shift
4. Resulting contact ratio
5. Resulting safety factors at nominal load
6. Resulting safety against scuffing

You can now observe specific sliding by clicking "Graphics" → "Evaluation" → "Specific sliding".

Figure 15. Call the graphic to illustrate specific sliding
3.3.3 Lubrication

You can select the lubrication type and lubricant directly in the main screen. To specify the lubricant temperature, click the Plus button to the right of the lubrication type. You can also input data about the ambient temperature in the "Operating backlash" tab.

Figure 16. Details about lubrication
4 Strength analysis with load spectra

4.1 Resulting service life with required safety factors

In the first step, you must define the service life in hours, taking into account a required safety factor. The required safety factors for different settings and modules are inserted automatically by the software. In module-specific settings these safety factors are predefined for each specific module and can differ according to whether metal (as stated in DIN, ISO and AGMA) or plastic materials are used.

You can also input your own values in the "Required safeties" tab.
To do this, select "Safeties are not depending on size" from the drop-down list and input your own values:
Figure 18. Setting the required safeties

To calculate the resulting service life whilst taking into account the load spectrum defined in the task, input the load spectrum elements as described in section 3.1.3.
Now set the application factor to 1.00, which is the usual setting when you are working with load spectra. (However, this value can be greater than 1.00 depending on which application/defaults are being used.) In addition, you can apply different modifications of the endurance limit range. Press “F1” to display the online help for more information about this. The calculation is then performed when you click \(\sum\) (Calculate) or press F5.

Then perform the analysis with 200 kW. Click "Report" \(\rightarrow\) "Service life" to display the results in a report.
Calculation of service life

Required safety for tooth root \([SF_{\text{min}}]\) 1.40
Required safety for tooth flank \([SH_{\text{min}}]\) 1.00

Load data

<table>
<thead>
<tr>
<th>Power (kW) ([P])</th>
<th>Speed (1/min) ([n])</th>
<th>Torque (Nm) ([T])</th>
<th>Application factor ([KA])</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.000</td>
<td>440.0</td>
<td>4340.6</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Load spectrum

Own Input

Number of element in the Load spectrum: 4

Reference gear: 1

<table>
<thead>
<tr>
<th>No.</th>
<th>[%]</th>
<th>[kW]</th>
<th>[1/min]</th>
<th>[Nm]</th>
<th>KV</th>
<th>KHb</th>
<th>KHa</th>
<th>Ky</th>
<th>YM1</th>
<th>YM2 OilTemp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.00</td>
<td>8.00</td>
<td>88.0</td>
<td>868.1179</td>
<td>1.0076</td>
<td>1.1376</td>
<td>1.1100</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>20.00</td>
<td>30.00</td>
<td>220.0</td>
<td>1302.1768</td>
<td>1.0152</td>
<td>1.0911</td>
<td>1.0244</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>3</td>
<td>40.00</td>
<td>144.00</td>
<td>352.0</td>
<td>3906.5304</td>
<td>1.0163</td>
<td>1.0338</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>4</td>
<td>30.00</td>
<td>200.00</td>
<td>440.0</td>
<td>4340.5894</td>
<td>1.0199</td>
<td>1.0338</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Woehler line (S-N curve) in the endurance domain according: according to standard

Notice:
Calculation-method according to:
- ISO 6336, Part 6
During the calculation al the load-coefficients (ISO6336: KV, KHb, KFb; AGMA2001: Knu, Km, ..) for each load spectrum bin are calculated separately.

Notice:
Calculation with methods ISO6336 and AGMA 2001 results in a reduction of resistance in the domain of fatigue resistance (from circa 10^7 to 10^10 cycles).
The lifetime calculation takes this into account (also with the S-N curve (Woehler Curve) of the Miner type).

Results

Required safety for tooth root \([SF_{\text{min}}]\) 1.40
Required safety for tooth flank \([SH_{\text{min}}]\) 1.00

Service life (calculated with required safeties):
System service life (h) \([H_{\text{att}}]\) 370
Tooth root service life (h) \([H_{Fatt}]\) 370 473.4
Tooth flank service life (h) \([H_{Hatt}]\) 6480 2.245e+004

Damage calculated on the basis of the required service life
\([H]\) (20000.0 h)

<table>
<thead>
<tr>
<th>No.</th>
<th>F1%</th>
<th>F2%</th>
<th>H1%</th>
<th>H2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>27.54</td>
<td>619.66</td>
<td>53.31</td>
<td>15.39</td>
</tr>
<tr>
<td>4</td>
<td>5377.94</td>
<td>3605.22</td>
<td>255.35</td>
<td>73.71</td>
</tr>
</tbody>
</table>

\(\Sigma\) 5405.48 4224.88 308.66 89.09

Damage calculated on basis of system service life
The resulting system service life with the required safety factors is 370 hours.
The interim values for K_{HF} (in this example) will be calculated using the selected method (in this example ISO 6336) and transferred to the specific load spectrum element.

![Figure 21](image)

![Figure 22](image)
4.2 Resulting safety factors for a required service life

After you have specified a required service life in the "Strength" group, this analysis is performed simultaneously when you run "Calculations with load spectra". The calculation is performed with one iteration. The results are displayed in the "Results" window.

Figure 23. Results of safety factors with load spectra for the required service life

4.3 Calculating maximum permissible torque

Similarly, click the Sizing button to define the maximum transmissible power. In this case, the specified speed, required service life and the necessary safety factors are taken into account.

Figure 24. Calculating maximum permissible torque
5 Additional calculations

5.1 Safety against scuffing

In the lower part of the main window, you can also see safeties against scuffing for integral or flash temperature criteria:

![Safety factors against scuffing](image)

You can show the progression of the flash temperature across the contact by clicking "Graphics"→"Evaluation"→"Flash temperature", see Figure 26. If you now click "Calculation"→"Modifications" (see Figure 27), for example the program sizes a tip relief (here optimized for 75% nominal load and 50% manufacturing tolerance) and transfers the changed tooth form [Accept data] (this is shown in the message displayed in Figure 28), you can therefore change the progression of flash temperature in the tip area.

![Flash temperature progression over the unmodified tooth form](image)

![Call to the profile correction screen, sizing of a tip relief for 75% of nominal load etc.](image)
Figure 28. Message you see after clicking the [Accept] button

Figure 29. Input the correction.

If you now click "Calculation" again in the cylindrical gear main screen (F5), the system defines the safety factor against scuffing using the predefined nominal load. Here you should note that these factors are now higher than previously. Compare these values with Figure 25 and Figure 30.
If you now calculate the flash temperature progression again by clicking "Graphics"→"Evaluation"→"Flash temperature", you will see that the flash temperature has reduced at the tooth tip to the gear tooth mass temperature.

![Flash temperature graph](image1)

Figure 31. Progression of flash temperature after tip relief

5.2 Necessary hardening depth

To estimate the necessary hardening depth, use the progression of the shear stress level as the result of Hertzian pressure. Click "Graphics"→"Evaluation"→"Hardening depth" to get the stress distribution. We recommend you try to achieve a hardening depth that is twice the depth of the shear stress maximum. If the gear is ground after implementation/hardening, you must add the grinding allowance to the recommended hardening depth.

![Hardening depth graph](image2)

Figure 32. Display showing shear stress across the tooth depth, recommended hardening depth